296 research outputs found

    Operating envelope charts for the Langley 0.3-meter transonic cryogenic wind tunnel

    Get PDF
    To take full advantage of the unique Reynolds number capabilities of the 0.3-meter Transonic Cryogenic Tunnel (0.3-m TCT) at the NASA Langley Research Center, it was designed to accommodate test sections other than the original, octagonal, three-dimensional test section. A 20- by 60-cm two-dimensional test section was installed in 1976 and was extensively used, primarily for airfoil testing, through the fall of 1984. The tunnel was inactive during 1985 so that a new test section and improved high speed diffuser could be installed in the tunnel circuit. The new test section has solid adaptive top and bottom walls to reduce or eliminate wall interference for two-dimensional testing. The test section is 33- by 33-cm in cross section at the entrance and is 142 cm long. In the planning and running of past airfoil tests in the 0.3-m TCT, the use of operating envelope charts have proven very useful. These charts give the variation of total temperature and pressure with Mach number and Reynolds number. The operating total temperature range of the 0.3-m TCT is from about 78 K to 327 K with total pressures ranging from about 17.5 psia to 88 psia. This report presents the operating envelope charts for the 0.3-m TCT with the adaptive wall tes t section installed. They were all generated based on a 1-foot chord model. The Mach numbers vary from 0.1 to 0.95

    Lassoing and corraling rooted phylogenetic trees

    Full text link
    The construction of a dendogram on a set of individuals is a key component of a genomewide association study. However even with modern sequencing technologies the distances on the individuals required for the construction of such a structure may not always be reliable making it tempting to exclude them from an analysis. This, in turn, results in an input set for dendogram construction that consists of only partial distance information which raises the following fundamental question. For what subset of its leaf set can we reconstruct uniquely the dendogram from the distances that it induces on that subset. By formalizing a dendogram in terms of an edge-weighted, rooted phylogenetic tree on a pre-given finite set X with |X|>2 whose edge-weighting is equidistant and a set of partial distances on X in terms of a set L of 2-subsets of X, we investigate this problem in terms of when such a tree is lassoed, that is, uniquely determined by the elements in L. For this we consider four different formalizations of the idea of "uniquely determining" giving rise to four distinct types of lassos. We present characterizations for all of them in terms of the child-edge graphs of the interior vertices of such a tree. Our characterizations imply in particular that in case the tree in question is binary then all four types of lasso must coincide

    Cluster counting: The Hoshen-Kopelman algorithm vs. spanning tree approaches

    Full text link
    Two basic approaches to the cluster counting task in the percolation and related models are discussed. The Hoshen-Kopelman multiple labeling technique for cluster statistics is redescribed. Modifications for random and aperiodic lattices are sketched as well as some parallelised versions of the algorithm are mentioned. The graph-theoretical basis for the spanning tree approaches is given by describing the "breadth-first search" and "depth-first search" procedures. Examples are given for extracting the elastic and geometric "backbone" of a percolation cluster. An implementation of the "pebble game" algorithm using a depth-first search method is also described.Comment: LaTeX, uses ijmpc1.sty(included), 18 pages, 3 figures, submitted to Intern. J. of Modern Physics

    Error-correcting code on a cactus: a solvable model

    Get PDF
    An exact solution to a family of parity check error-correcting codes is provided by mapping the problem onto a Husimi cactus. The solution obtained in the thermodynamic limit recovers the replica symmetric theory results and provides a very good approximation to finite systems of moderate size. The probability propagation decoding algorithm emerges naturally from the analysis. A phase transition between decoding success and failure phases is found to coincide with an information-theoretic upper bound. The method is employed to compare Gallager and MN codes.Comment: 7 pages, 3 figures, with minor correction

    Graphical representations and cluster algorithms for critical points with fields

    Full text link
    A two-replica graphical representation and associated cluster algorithm is described that is applicable to ferromagnetic Ising systems with arbitrary fields. Critical points are associated with the percolation threshold of the graphical representation. Results from numerical simulations of the Ising model in a staggered field are presented. The dynamic exponent for the algorithm is measured to be less than 0.5.Comment: Revtex, 12 pages with 2 figure

    Numerical Solution of Hard-Core Mixtures

    Full text link
    We study the equilibrium phase diagram of binary mixtures of hard spheres as well as of parallel hard cubes. A superior cluster algorithm allows us to establish and to access the demixed phase for both systems and to investigate the subtle interplay between short-range depletion and long-range demixing.Comment: 4 pages, 2 figure

    Emergence of hyperons in failed supernovae: trigger of the black hole formation

    Full text link
    We investigate the emergence of strange baryons in the dynamical collapse of a non-rotating massive star to a black hole by the neutrino-radiation hydrodynamical simulations in general relativity. By following the dynamical formation and collapse of nascent proto-neutron star from the gravitational collapse of a 40Msun star adopting a new hyperonic EOS table, we show that the hyperons do not appear at the core bounce but populate quickly at ~0.5-0.7 s after the bounce to trigger the re-collapse to a black hole. They start to show up off center owing to high temperatures and later prevail at center when the central density becomes high enough. The neutrino emission from the accreting proto-neutron star with the hyperonic EOS stops much earlier than the corresponding case with a nucleonic EOS while the average energies and luminosities are quite similar between them. These features of neutrino signal are a potential probe of the emergence of new degrees of freedom inside the black hole forming collapse.Comment: 11 pages, 3 figures, accepted for publication in ApJ

    Pocket Monte Carlo algorithm for classical doped dimer models

    Full text link
    We study the correlations of classical hardcore dimer models doped with monomers by Monte Carlo simulation. We introduce an efficient cluster algorithm, which is applicable in any dimension, for different lattices and arbitrary doping. We use this algorithm for the dimer model on the square lattice, where a finite density of monomers destroys the critical confinement of the two-monomer problem. The monomers form a two-component plasma located in its high-temperature phase, with the Coulomb interaction screened at finite densities. On the triangular lattice, a single pair of monomers is not confined. The monomer correlations are extremely short-ranged and hardly change with doping.Comment: 6 pages, REVTeX

    Dynamic Stability Instrumentation System (DSIS). Volume 1: Hardware description

    Get PDF
    This paper is a hardware description manual for the Dynamic Stability Instrumentation System that is used in specific NASA Langley wind tunnels. The instrumentation system performs either a synchronous demodulation or a fast Fourier transform on dynamic balance strain gage signals, and ultimately computes aerodynamic coefficients. The DSIS consists of a double rack of instruments, a remote motor-generator set, two special stings each with motor driven shafts, and specially designed balances. The major components in the instrumentation rack include a personal computer, digital signal processor microcomputers, computer-controlled signal conditioners, function generator, digital multimeter, and an optional fast Fourier transform analyzer

    Optimally Dense Packings for Fully Asymptotic Coxeter Tilings by Horoballs of Different Types

    Full text link
    The goal of this paper to determine the optimal horoball packing arrangements and their densities for all four fully asymptotic Coxeter tilings (Coxeter honeycombs) in hyperbolic 3-space H3\mathbb{H}^3. Centers of horoballs are required to lie at vertices of the regular polyhedral cells constituting the tiling. We allow horoballs of different types at the various vertices. Our results are derived through a generalization of the projective methodology for hyperbolic spaces. The main result states that the known B\"or\"oczky--Florian density upper bound for "congruent horoball" packings of H3\mathbb{H}^3 remains valid for the class of fully asymptotic Coxeter tilings, even if packing conditions are relaxed by allowing for horoballs of different types under prescribed symmetry groups. The consequences of this remarkable result are discussed for various Coxeter tilings.Comment: 26 pages, 10 figure
    • …
    corecore